Subscribe Free

Join 2670+ others. No spamming.
I promise!

We are currently under high development. Follow us at github.


Looking for Python Tutorials?
Check these awesome tutorials



eriklindernoren/ML-From-Scratch

3989

eriklindernoren / ML-From-Scratch

Python

Bare bones Python implementations of some of the foundational Machine Learning models and algorithms.


READ ME

Machine Learning From Scratch

About

Python implementations of some of the fundamental Machine Learning models and algorithms from scratch.

The purpose of this project is not to produce as optimized and computationally efficient algorithms as possible but rather to present the inner workings of them in a transparent way. The reason the project uses scikit-learn is to evaluate the implementations on sklearn.datasets.

Feel free to reach out if you can think of ways to expand this project.

Table of Contents

Usage

Installation

$ pip install -r requirements.txt

Classification

$ python supervised_learning/multilayer_perceptron.py

Figure: Classification of the digit dataset using MLP.

Clustering

$ python unsupervised_learning/dbscan.py

Figure: Clustering of the moons dataset using DBSCAN.

Association Analysis

$ python unsupervised_learning/apriori.py 
- Apriori -
Minimum - support: 0.25, confidence: 0.8
Transactions:
    [1, 2, 3, 4]
    [1, 2, 4]
    [1, 2]
    [2, 3, 4]
    [2, 3]
    [3, 4]
    [2, 4]
Frequent Itemsets:
    [1, 2, 3, 4, [1, 2], [1, 4], [2, 3], [2, 4], [3, 4], [1, 2, 4], [2, 3, 4]]
Rules:
    1 -> 2 (support: 0.43, confidence: 1.0)
    4 -> 2 (support: 0.57, confidence: 0.8)
    [1, 4] -> 2 (support: 0.29, confidence: 1.0)

Current Implementations

Supervised Learning

Unsupervised Learning